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ABSTRACT

The use of intrinsic random function stochastic models as a basis for
estimation in geostatistical work requires the identification of the general-
ized covariance function of the underlying process, and the fact that this
function has to be estimated from the data introduces an additional source of
error into predictions based on the model. This paper develops the sample re-
use procedure called the "bootstrap" in the context of intrinsic random
functions to obtain realistic estimates of these errors. Simulation results
support the conclusion that bootstrap distributions of functionals of the
process, as well as of their "kriging variance", provide a reasonable picture
of the variability introduced by imperfect estimation of the generalized
covar iance function.

KEY WORDS: regionalized variables, kriging, interpolation, sample re-use,
nonparametric error estimates, confidence intervals.
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INTRODUCTION

One of the mgst frequently cited problems with the geostatistical es-
timation technigue known as kriging 15 the necessity of using an estimated
mcgel for the covariance function (semi-variogram, qeneralized covariance
function). Trnis proplem 15 allugea to. for example, by Pnilip and watson
11986). wno cite 1n particular earlrer work of Haray (1977). and by Armstrong
(1984a). among others work by Brooker (1986) concluded trat the kriging
variance 1s "robust 1o most errors likely to pe made 1n semivariogram mgdel
selection” for the class of models i1ncluded 1n nis parametric STtudy and a par-
ticular regular block-sample geometry, with the exception that 1t could be
Quite sensitive 1O the 1ncorrect choice of tre nugget value. Diamond and
Armstrong (1984) adefinead a metric orn the space of variogram functions ana
prcviged estimates of the stapbility of the kriged estimares and the kriging
variance relative to changes 1n the variogram function as measurea b5y 1tnhis
metric Lg thelr retric 1§ baseg on the ratic bet-een twc .ariogram func-
tions. less (absolute) variability 1s allowed wi1thin a §-neignborhooa of a
given variogram where that variogram 15 small, ang almost always 1t 1§ smal-
lest for separations near zeroc. this confirms tne sensitivity of kriging
results to the choice of nugget cbserved by Brooker

Motivated by this earlier work. this paper explores a techn.que for
quantif,ing the error resulting from imperfect model estimatign when Lhe only
dita at hana are the sample observations With the 1ncreacing avarlapility of
high-speed computers. a number of computation-intensive. non-parametric
mathoas for addressing this problem have been developed 1n the statistical
Titerature 1n recent years Tnese sample-reuse methods., Such as the
"jackknife ., cross-validation and the “bootstrap . are reviewed and Compared
by Efron (1982) Applications in geostatistics include Chung (1984). Duorule
(1983). Campbell (1986) and Sclow (1985) This paper expands on the prelimi-
nary work of Sclow (1985) applying the pootstrap. introduced by Efron (1979),
to estimates of functionals of a stationary random process
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INTRINSIC RANDOM FUNCTIONS AND KRIGINMG
This prief revies w111 serve to Introduce the notation used 1n  This
paper For dctails tne reader 1c referrea toc the seminal paper of Matnereon
(1973) ana the more practical erxpesition by Delfiner (1973
The data. z = 2(x) = (20x,). -« ZUxy)). are samples at known, fixed
points x, of one realization 2(x) of a stochastic process 2(x). Propatilistic
assumptions aboul 2(x) may; ncluge jJoint normality of the random variables
2(x) 'rgexed by a spatral varirable r (1n d-dymensiona! Euclidean space) or
some form of generalizead staticnarity In this paper 1t 1S assumed that 2 1s
an intrans.c random furctiorn of orger k (k-IRF), whicr means. firsy, that (at
least locally) 1ts araft E(2ix)) 15 pdlynomial 1n x of oraer k. ana secondl,.
that 1f @ 1s a measure with compact Suppbort 1rn 3d-space with the property That

f otxvaain) = 0
for e-er; pclynomal pix) of oraer less than or equal to k. hen al. defined
b,

ta2ies) = [ 2it-2 aarty (1

'S a stationary rangom proc:ss (naexed by S 1n d-spacel. Below only
measures a «1th finite support (“k-increments ) are consigerad, and 1t w111 pe
convenient tc replace The 1ntegral ngtation cf EqQ (11 wi1th gn 1nner product
ngrati1on

. f
J Zit)ydart) = < a . ae

LN |

T
-
1E1 a, T ). (2
where {tl. .« U7} cort&ins the support of @ Second moments of al are
ucsumed tG exi1st. but nc explicil normality assumptions are madge If g ana R
are 1ny two k-1ncrements. and {tl. . U7} contains the union of their
surports then tne covariance of tne random variatles < a . 7 > ang < g, 2
1§ given 1irn terms of Lre generalized -ovariance function Kih) of the IRF 2
raefineg for n20) by
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L a, BJ l(('lt1-tJ|). t3)

where |-1 denotes the usual Euclidean norm 1n g-:pace

The kriging problem 15 tc estimate some functional f(Z) conditional on
the observations z Typical functionals are simply the 1dentity evaluated at
a poInt x, (interpclation) or ntegrals of Z cver a volume centered at Xq
(olock estimation). Estimators of E { f(Z) I Zix) } are restrictes to be
Tinear n thne data. ' e.. tc be of the form

f = T 2 Ztx ) = <2 2> (4
In adaition. the kriging algorithm proviges an estimate of

E{ (;-f(anlz}. 15

2

whi1rh 15 Thg 'kr1g1ng' sartgnce g

If tne generalized covariance funttion K were knogwn. thi1s proglem would
have a pest (1n tre sense of minimizing (5)) linear unbrased sclution f,. and

the wusual kriging algoritnm computes A, such that f, « < ). . z >, togetner
wi1lh the assocraled a¥ In practice. of course. K 1§ unkngwn and muSt be es-

timated from the gata. ard the usual procedure 1S to uSe thig estimate K 1n

rlace of K 1n the kriging eguations te obta'n a sutoptimal sclution f  (w1ln

wei1ghts ix’ and ;E
unfortunately. the estimation cof the ge-eralized covariance function K
1s highly prcolematic There have been numerous efforts in recent years to
imprgve on the method of Delfiner (1979, rich was critically reviewed by
Starks and Fang (1982) These 'nclude efforts at making the procedure more
robust against non-normality of the aatda i(5ee for example The aiscussion by
Armstrong. 1984p; ang some other types of approaches (e g . Kitamidis. 1985)
Nevertheless. all methods simulated by this author are plafued by problems of
ti1as and large variab11it,. even within an ynrealistic simylatic: framework

wherc the fgrm ~f the true function 15 kngwrn ana correctl, moaelcd uUnger

-5-
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tnese circumstances. additional effort toc quantify the error introduced by 1m-
perfect modeling seems worthwhile

A REVIEwW OF THE BOOTSTRAP
A readable 1ntroduclion to the bootstrap 1§ proviged by Efron and
Ticshirany  (1986). The literature on the subj)ect has grown rapialy since 1tS$
introauction by Efron (1979). and widespread application has nardly awaited
the estaplisnment of more fermal ungerpinnings such as providea by Bickel ang
Freeagman, 1981.

The basic 1acea of the pootstrap 18 .ery simple Let ély] be an estimate
of a parameter tor parameters) u(F) (Here I emplcy the notation of Efron ana
Tipsnirani, 1986.) Tnis means that there 1s a well agefinea algorithm for com-

puting #&. glven oDSer. ations , QJenerated by a sStochastic mechanism F
characterized by wunknown parameterts) wu  The avarlable cbservations y are

uted 1o generite an empirical estimate F ¢ F (which can pbe. for exrample. the

ustugl ngn-parametriz empirical distritution function. a smoogthed version of

this. or some parametric form, Simuiatien from F 1¢ uSsed to evaluale the

properties of the estimator 3  Specifically. -andom samples are drawn from F

teach 1s called a cootstrap sample. denotea by y ) and the algorithm 15 ap-

~ L
plied to compute @iy 1 1Fifty 16 t=s hunarea bootstrap samples are sometimes
recommendel. bul more are needed for computing bootstrapped cinfidence inter-
- >
~als 1 [Ire sample statistics of Tthe &(, ) are then usea tc estimate the
correzponding properties of the original estimator &y ) Fer example. the

bias of &t ;) may ve estimated by

- -

E- 5(1 ) wlF), (6)
F

~wnhere E. @ty ) s approximated b, the .c&n cf the pootstrapped values The
F

standard error 15 apprcximated by the square rco: of the sample variance of
trhe boolstrapped <alues
For the case of 1nadeperdentl,. 1dentically girstripbuted observationy g

from  ar. unkngwn gi:ct-ibution F ile abc.e program 1s eastly carried ocut  For

-6-
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observations generaléd by a more complicatea model, such as a regression
model. modifications are needed toc transform y to a nominglly 1 1.3 set of

rangom variables so that an empirical F may be computed. 3Swmmilarly. when the
observations are generated by an 1ntrinsic random function (1ncluaing thc pos-
s:b111ty of non-constant arift) & methoa for reaucing the correlated
ocservations Z(x) LG an approx mately 1 1.a sample must be found Tnigs 15 of
course evittly the same problem faced 1n the original work of Matreron (1973).
and the reason for 1ntroducing the notion of k-increments. Detairls for the
present problem w111 pe given 1n the following section.

L second Qquesticn 1o be answered 1n  lhe present context 1S. what
parameter(s) srould bte bootlstrapped® As Dramona ang Armstrong 11984) observe.
1t 1s ngl the estimate of the generalized covariance function K(h) which 15 of
interest. sc much as tre effect of misspecificatron of this function on

prediction algerithme such as The kriging algerithm  In this connection 1t 1§

of interest thal the kriged weights )} depend on tre gdata z only througn K. as

d6€s Lhé krigQing .ari1ahce af. .nereas f(' CoOmpuled b, 1nSerting 1( i Ea (4

1n place of 2. of course depenas explicitly on the observed values
Trerefcre. once first prociem of cobtaining an empirical arstricuticn F from
which we can Simylate 15 sclvea. F w111 pe used toc generate bcotstrap samples

Z (x) (at the or1g1na'| cbservatlioh pcint x) and the prescribed estimation pro-

cedure w111 be used to obta'n Kiz » Ther the wusual xriging algorithm
2'

pro.1des * and o

based cn K7 ) Ho~eser. the Qriginal

tcgether w1th X | 1o compute f .1a Eq (42,

(x) w111 pe used.

[LL]

In part the procedure Just described w111 be assessing a particular al-

gorithm “c¢- oktaining ; Clearly a requirement for such an algorithm 1n the
present context 15 that 1t pe completely automatic. methods which rely on
graphical 1nteract'sn with thé uSer are impractical In tnis paper Kitanidis

(1985) "minimym-varignce Estimator S uSed. constrained by Quadratic program-
ming tc provide positive-definite estimates  (ThuS constrained the estimator
1s no lgnger wunblased. of course: 1n fact simulation suggests considerable
bias ) This estwmatcer requiret a preliminary estimate of x. from which the

¢lgorithm can be applied 1terativel,; tc mMove tow=ards the sclution K. which 1§

a fizeg pog.nt  Such a prelyminar, estimals could be pré.1ged b, Delfiner's
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method (1979). and swmulation experience Suggests That convergence 1s fairl,
rap1d. five 1terations generally estimates tne fixed point toc three or four
signifacant faigures In orger toc minimize computation 1n the nestea Simula-
tion framework of this stuay. however, the algorithm 1s .tarted with 3
constant 1nitial esimate. fellowed by a single step towaras the fixed point
Tre point 1t that the bootstrap techniqué described below can similarly be
used to evaluate any automatic algoritnm

BGOTSTRAPPING A k-IRF
Solow (1985) treatea the smplest case of an 1ntrainsic random function.
namel, a stationar, process (for which the condition including Ea. (1) holas
for @]] measures a with compact Suppo~t. this 1S somelimes called an 1ntrinsic

random function of orader -1.) The mean 1t asSumed to bLe zerc tIn practice.
the sample mean 15 subtracted from 311 gbsersaticns.) Then the positi.e
gefirite coc.arvance matrix C of the cbser.atigns Z = (2(51. . :‘SN" can

T
beé decompoSed 1ntc the product of a matrix & ang 1ts trancpose. € = & (Sclow

uses & Cholesky decomposition where & 15 lgwer triangular. bul Th1S 18 not

€zsential). ang the N ccmponents of the .ector Q_lglgn are uncerrelated -1th
mean Zerg anQ CoMMEnR var 1ance one tIn general. of course. th1s does not im-
ply that 1they are 1ndependently 1dentically distributed. withoutl additional

S AllT

assumptions of normality ) The unknown ( 15 replaced by an estimate C = &

-1

and  utx) = & "2Z(x) 15 uSed 1o Qenerate an empirical distriputicn function F

Bootstrezpea samples z 1x) are then cbtained from -andom samples u (1) of F by

the transformation z (x) = $u (x) and uSed e generate bocolstrapped covariance

functions E and estimates cf relitea functionals of tre process

Tre situation becomes slignhtly more complicated for an i1ntrinsic random
function of order greater tnan or equal to 2ero. because now there 1s. in ad-
giticn te correlation among the observations. the possibility of unknown
pelyromial draft. so the sample covariance matrix of the observations 2z can
ngt be ec<timatea directly The soluticn, of course. 1S tC wGrk with k-
'ncrements a sSupported on the observation points x If there are N
Gkserv.atien points. then there are M = N - Cik-a.k) linearly 1ndepengent k-
ncrements supportea on x. where {im.m ) denotes the pincmial coefficrent, thre

number of wa,s of selecting subsets of s1zem from a set of sizem  Let a,
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. a,, be M linearly 1ndepengent k-increments Let A genote tThe MxN

M
th th -

matrix whose (1.))° element 15 the )~ element (coefficient) of @ . Let ¥ be

the estimate of the generalizea covariance function based on the original data

(x). anda estimate the MxM covarlance matrix wiLh elements C1J =

Cov { -a,.2>. <@a..2> } by using K 1n Eq (31 Now. following Sclow. factor C

™~

~n A1

= ® and compute u = ¢ "(AZ) o obta'n M approximatel, inageperdent ang 1den-

tically distributed random varlanles u. These are wused tc generate an

empirical distribution function F
Tc complete the pootsTrap algerithm, draw & random sample u of size M

from F ana compute (43) = $u ana finall, ;1 = &7(&2) ., where & 15 an,

~ -

generalized nverse of & Tren. as cutlinea previcusi,. compute K(Z 1. appl,

the kriging equaticns 1o Qel kriging weights ) . .ariance o °. aid the

r

pootstrappeg estimate f = -2 .z (Of interest w111 pe trhe sample di1Stritu-

P
[ =

ticns of f ana ¢

SOME SIMULATION RESULTS
The remarks 1n This seclion are based on a simulation study consisting
of one nundared simulations of a first-orge- IRF with generalizea covariance
function KX(h) = -10Inl. Thirty observaticns were generated for each smyla-

tion. &t the pcInts x xBn zhgwn 1N F1gure 1 w1tk solad sjmno1s The

1°
form of the Ki1taniars algorithm previcusl, descibed -as used to estimate the

three carameters cf the general mcael

K(ny = Co 3th) - bpinl - balhlJ. (7)

1
{wnere g s the dgelta function). starting the 1teration with CO = 0. by = 1
énd b, = ] (As Kitanidis obSErves rn hig 1985 paper. whal counts 1n the

selection of the 1ni1tral estimate 15 the ratioc of the coefficients. so 1n fact
the correct rat1c 1s offered as a starting point  Thnis does not xeep the al-
goritnm from converging rapidly tc 'ts blased fireqd point. nowever.) The

covariance matraix of twenty-seven k-increments 4z. estimated using K. was fac-
tored and Twent,-Seven appro:imatel, 1ndependent and 1dentically distributed
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numbers u were computed as described above. The usual empirical distribution

~

function, with mass 1/27 at e.ch of these points, was used for F, and one
hundred bootstrapped samples g* were generated from E for each simulation.
The same Kitanidis algorithm applied to each g* yielded a bootstrapped es-
timate 2*.

The functionals of E that were considered were simply f(Z) = Z(xP) at
the five points F = A. B, C, D and E shown in Figure 1 with open symbols.
Point A is very close to one of the data points, B and C are surrounded by ob-
servations, D is oniy partly surrounded, and E is well outside the observed
area. For each point the following quantities were computed:

~

fT’ 0%, using the known true generalized covariance function K;

~

fK’ oé, using the estimated generalized covariance function k;

and one hundred values of

f*, 02 , Uusing the bootstrapped generalized covariance functions K .

(A11 thirty observations were used in the kriging equations.)

As observed previously, the constrained Kitanidis algorithm (all of the
coefficients in Eq. (7) must be non-negative) is not unbiased. Figure 2 is a
histogram of the one hundred simulated values of the nugget effect CO; they
range up to 13.3 and only about half are at or very close to zero. The linear
coefficients b1 are shown in Figure 3; they have an average value of about 8.

and include some zeros. This bias actually has very littie effect on fK’
which in most cases is very close to ?T‘ as shown in Figure 4 for point C.

The effect on og is more substantial (Figure 5); the algorithm has a downward
bias.
As an estimate of bias, however, the natural bootstrapped estimate

Bp = f - f tor B, =f, - frs (8)

-10-
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where the bar denotes the average over all bootstrap samples, is not very

satisfactory. When Bf is practically zero, gf is often relatively ‘arge; when

Bf is significantly different from zero, Bf is as likely as not to have the
wrong sign (indeed, more likely when the estimation point is farther from the

deta points). Typica)l is Figure 6, a plot of Ef vs. Bf at point C. It might
be thought that this apparent arbitrariness of sign is due to the influence of
a few extreme values in the distributior of bootstrapped values; some
bootstrap distribution, such as the one in Figure 7, have long tails or other
non-normal behavior (which might be traced to the presence of a single outlier
in the data whose influence on a handful of bootstrap samples happens to be
large). Kowever, if the median of the distribution is used in place of the
mean in (8), the result is generally an estimate of bias that, although small
in magnitude, 1is of the wrong sign (Figure 8), so a more robust estimate of
the center of the bootstrap distribution is of little help.

On the other hand, 50. defined by

- ~2x ~2
Ba = log 0- - log oy

for BO = 1ag 8§ - log 3%,

seems to be negative almost every instance, regardliess of the sign of Bo; see
Figure 9. This is a reflection of the bias of the algorithm remarked in
Figure 4; just as simulation underestimates the true value on the average, so
the bootstrap simulation underestimates the kriged value.

Thus it appears that at least for this problem bias estimation is
problematical, and bias "correction" (i.e., subtracting the bias estimate from
the kriged estimat:) decidedly inadvisable. This agrees with a remark by
Efron and Tibshirani (1986; p. 61).

More interesting is the question of the increase in variability in the
kriged estimate as a result of using an estimated generalized covariance func-
tion. Confidence intervals for ?T and 3¥ can be constructed for each
simulation, and their predicted coverage compared with the observed coverage
in the one hundre: trials. One hundred bootstrap samples are considered in-
sufficient to construct good confidence 1limits, according to Efron and
Tibshirani. They recommend a minimum of 250 samples for the percentile method
(described below), and 1000 samples for the more complicated bias-corrected
percentile methods. These sample sizes are impractical in a simulation of

-11-
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this size. Nevertheless, some interesting observations emerge even with the
smaller bootstrap samples used here.

The first method for constructing confidence intervals 1is called the
percentile method (Efron and Tibshirani, 1986; Efron, 1982). Here a symmetric
100(1-29)% confidence interval is constructed simply by taking as endpoints

the 7th and (1-7)th quantiles of the empirical distributior of the

bootstrapped values of the statistic in question. Table I shows the actual
coverage of the one hundred 90% confidence intervals constructed using the
percentile method for each of the estimated quantites, together with the num-

ber of simulations for which the optimal value (i.e., ?T or ;$) fell below or

A

above the computed confidence interval. The confidence intervals for fT are
extremely conservative, attaining at least 97% coverage at all five points,

whereas confidence intervals for 8% are somewhat liberal and markedly nonsym-
metric.
One problem may be that the guantity bootstrapped was not approximately

pivotal (see Hinkley, 1986), although the use of the logarithm of 02 was an

attempt to move closer to a pivotal quantity for this scale parameter. The
secand method Tor computing confidence intervals is a fairly automatic tech-
nique for correcting this problem (see the argument in Efron, 1982, ». 83).
This "bias-corrected” percentile method involves making an adjustment for the

fact that ?K or 35 is not the median of its bootstrapped distribution.
Table 2 shows the coverage of bias-corrected 90%-confidence intervals. The
bias-corrected confidence intervals are now liheral for the point estimates

)

fT. but fairly symmetric with respect to failures on the low and high sides.
Failures, unsurprisingly, are associated with poor bias estimates. Bias-

corrected confidence intervals for the kriging variance ;$ have about the same
coverage as percentile-method intervals and fatlures are slightly more sym-
metric, although the computed intervals still tend to be too low. The bias-
corrected intervals are also five to ten percent narrower than intervals
computed by the percentile method.

A third method for constructing confidence tntervals mentioned by Efron
and Tibshirani is a modification of the bias-corrected percentile method which
uses an estimate of skewness based on the bootstrap distribution. As

-12-



Campbell: Bootstrapped Models . . . DRAFT

bootstrap distributions are frequently highly skewed, this further adjustment

might correct the observed asymmetry of faiiures for the intervals for ;T'

More bootstrap samples smooth out the bootstrap distributions con-
siderably and improve the estimation of tail percentiles, and especially the
estimation of the percentile of the kriged value that plays a central irole in
the bias-correction method. Rarely, a significant shift in the computed con-
fidence interval can result, but more typically there is little change, as
shown in Figures 10 and 11.

PANDOMIZATION
The reader may have noticed that there are a number of points in the
procedure described above where arbitrary choices are made: in the selection
of A (i.e., of M linearly independent k-increments), 1in the choice of a

generalized inverse A™, and in the factorization of C, because if U is any

unitary matrix, UUT= I, then

TaT

C-awe -adl. (9)

The choice of a generalized inverse s immaterial because if At s

another generalized inverse of A, then A*(Ag)* differs from A'(Ag)* only by a
polynomial of order k, and the algorithm for estimating K(h) should produce

the same result using either g*‘ Also, if B is another MxN matrix of linearly
independent k-increments, then B = QA for some non-singular MxM matrix Q, and
if EA - 37, where EA is the estimated covariasce matrix of Az, then EB =

AA

0887Q". I this factorization of Cg is used, then y = 87071(qaz) « #71(Az)
as before. However, an alte~native choice of the factorization wil) result

in a different vector u and a different F.

The magnitude of the effect of the choice of factorization was inves-
tigated using a smal) simulation study and found to be comparable to the Monte
Carlo sampling effect inherent in basing estimates on a finite number of

bootstrap samples from ?. Therefore it might be neglected. However, it might
also prove wuseful. At the expense of a slight increase in computation, ran-
domization of factorization can be achieved by generating random unitary

-13-
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matrices U for Eq. 9 and redefining u =($U)'1(Ag) for each bootstrap sample,
or, more reasonably, for each set of perhaps ter samples. The principal ef-
fect of this modification appears to be a widening of the bootstrap
distribution and thus of high-content confidence confidence intervals; compare
Figures 11 and 12. In this instance the upper end of the 90% confidence in-

terval was shifted just enough to cover the "true" value oy.

SUMMARY

The Matheronian theory of k-increments as a tool permitting the estima-
tion of the generalized covariance function of an intrinsic random function
from a single realization has been applied here to reduce the observations
from a single realization to an approximately i.i.d. collection of linear com-
binations of the observations. These can be resampled to generate new sets of
"bootstrapped” observations, which can be used to repeat the estimation proce-
dure. According to bootstrap theory, the distribution of the resulting
bootstrapped estimates (be they the parameters of the estimated generalized
covariance function itself or functionals of the estimated process such as
kriged interpolations, block estimates or kriging variances) should ap-
proximate the corresponding true distribution, and thus provide a non-
parametric way to estimate such measures of error of the original estimator as
bias or standard ecror, as well as generating confidence intervals for them.

Qualitatively, the simulation results reported here support this theory,
at least insofar as suggesting that the spread of the bootstrap distributions
does indeed reflect the variability introduced by imperfect estimation of the
generalized covariance function required for kriging. Bias estimation is un-
retiable, but bias-corrected confidence intervals are only slightly narrow,
considering that the simulations used only one hundred bootstrap samples per
Simulation, compared to the minimum of one thousand recommended for this par-
ticular type of computation. The arbitrariness of one step of the procedure,
namely the choice of factorization for the covariance matrix of the k-
tncrements used, might profitably be exploited to widen the computed
confidence intervals slightly.

-14-



Campbell: Bootstrapped Models . . . DRAFT

REFERENCES

Armstrong, M., 1984a, Problems with Universal Kriging: Math. Geol., v. 16,
no. 1, p. 101-108.

Armstrong, M., 1984b, Improving the Estimation and Modelling of the Variogram:
in Geostatistics for Natural Resources Characterization (G. Verly et al.,
eds.), D. Reidel Publishing Company, Dordrecht, p. 1-19.

Bickel, P. J. and Freedman, D. A., 1981, Some Asymptotic Theory for the
Bootstrap: Ann. Stat., v. 9, no. 6, p. 1196-1217.

Brooker, P. I., 1986, A Parametric Study of Robustness of Kriging Variance as
a Function of Range and Relative Nugget Effect for a Spherical
Semivariogram:Math. Geol., v. 18, no. 5, p. 477-488.

Campbell, K., 1986, Kriging for Interpolation of Sparse and Irregularly
Distributed Geological Data: Los Alamos National Laboratory Technical
Report LA-UR 86-1894,

Chung, C. F., 1984, Use of the Jackknife Method to Estimate Autocorrelation
Functions (or Variograms): in Geostatistics for Natural Resources
Characterization (G. Verly et al., eds.), D. Reidel Publishing Company,
Dordrecht, p. 55-69.

Delfiner, P., 1979, The Intrinsic Mode) of Order k: Notes for a short course
at Battelle Seattle Research Center, Seattle, October, 1979.

Diamond, P. and Armstrong, M., 1984, Robustness of Variograms and Conditioning
of Kriging Matrices: Math. Geol., v. 16, no. 8, p. 809-822.

Dubrule, 0., 1983, Cross Validation of Kriging in a Unique Neighborhood:
Math. Geol., v. 15, no. 6, p. &R7-699.

tEfron, B., 1979, Bootstrap Methods: Another Look at the Jackknife: Ann.
Stat.. v. 7, no. 1, p. 1-26.

Efron, B., 1982. The Jackknife, the Bootstrap and Other Resampling Plans:
Society for Industrial and Applied Mathematics, Philadelphia, 92 p.

tfron, B. and Tibshirani, R., 1986, Bootstrap Methods for Standard Errors,
Confidence Intervals and Other Measures of Statistical Accuracy:
Statistical Science, v. 1, no. 1, p. 54-77.

Hardy, k. L., 1977, Least Squares Prediction: Photogram. Eng. Remote Sensing,
v. 18, no. 4, p. 445-448.

Hinkley, D., 1986, Comment on Jackknife, Bootstrap and Othar Resampling
Methods 1in Regression Analysis by C. F. J. Wu: Ann. Stat.., v. 14, no. 4,

p. 1312-1316.

Kitanidis, P, K., 1985, Minimum-Variance Unbiased Quadratic Estimation of
Covariances of Regionalized Variables: Math. Geol., v. 17, no. 2.
p. 196-208.

-15-



Campbell: Bootstrapped Models . . . DRAFT

Matheron, G., 1973, The Intrinsic Random Functions and Their Applications:
Adv. Appl. Prob., v. 6, p. 439-468.

Philip, G. M. and Watson, D. F., 1986, Matheronian Geostatistics--Quo Vadis:
Math. Geol., v. 18, no. 1, p. 93-117.

Solow, A. R., 1985, Bootstrapping Correlated Data: Math. Geol., v. 17, no. 7,
p. 769-775.

Starks, T. H. and Fang, J. H., 1982, On the Estimation of the Generalized
Covariance Function: Math., Geol., v. 14, no. 1, p. 57-64.

-16-



Campbell: Bootstrapped Models . . . DRAFT

TABLE 1. COVERAGE OF NOMINAL 90% CONFIDENCE INTERVALS FOR ?B AND 3§

CONSTRUCTED BY THE PERCENTILE METHOD (100 SIMULATIONS)

MEDIAN
BELOW WITHIN  ABOVE WIDTH OF
INTERVAL  INTERVAL  INTERVAL INTERVAL
fg at: A 0 99 1 765
B 1 99 0 431
c 0 100 0 417
D 1 99 0 1407
£ 0 97 3 1.455
ag at: A 5 95 0 1.396
B 1 86 13 414
c 1 84 15 413
D 0 84 16 416
E 0 92 8 1489
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TABLE 2. COVERAGE OF NOMINAL 90% CONFIDENCE INTERVALS FOR ?B AND gg
CONSTRUCTED BY THE BIAS CORRECTED PERCENTILE METHOD

MEDIAN
BELOW WITHIN ABOVE WIDTH OF
INTERVAL  INTERVAL  INTERVAL INTERVAL
fB at: A 9 79 12 .440
B 8 86 6 .327
C 7 91 2 .335
0 7 86 7 .410
E 7 82 11 1.380
g at: A 17 81 2 1.276
B 2 88 10 . 389
C 3 86 11 .378
D 3 84 13 .378
E 2 S0 8 .455
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. Thirty "observation" roin*s used in the simulations ars shown using
solid symbols. Kriged estimates are computed at the five labeled points
shown by open symbols.

2. Histogram of one hundred estimates based on simulated data of the
nugget effect, CO' The true value. used to generate the simulations, was
zero.

3. Histogram of one hundred estimates of the coefficient of the linear
term, bl' The true value was 10.

4. Histogram of one hundred values of the bias fK - fT of the estimate
at point C.
5. Histogram of one hundred values of the bias log oK ~ log aT of the

kriging variance at oint C.

6. The bootstrapped bias of the point estimate, computed as the average

of f - fK over one hundred bootstrap samples, vs. the actual bias f f

at point C. !

7. Histogram of %he bootstrap values f* at point B for <¢ne simulation.

The optimal value fT and the original kriged value fK are shown as heavy
lines.

. 8. The bootstrapped e: tlmate of the bias of the point estimate, computed

as the median of f* - f over one hundred bootstrap samples, vs. the ac-

tual bias fK - fT at point C.

9. The bootstrapped estimate of the bias of the kriging variance, com-

puted as the average of log 02* - log aK over one hundred bootstrap
samples, vs. the actual bias log as - log o$ at point U,

10. Histogram of one hundred bootstrapped values of the kriging variance
at point C for one simulation. The same factorization of the covariance

matrix was used throughout. o and 02 are shown as solid lines, and the
boundaries of the bias- correctel 90% confldence interval are shown as
dashed lines.

11. Histogram of one thousand bootstrupped values of the kriging
variance at point C for the same simulation illustrated in Figure 10.
The same factorization of the covariance matrix was used to generate each
sample,

12. Histogram of one thousand bootstrapped vaiues of the kriging
variance at point C for the same simulation illustrated in Figures 10 and
11. A different, randomly selected factorization of the covariance
matrix was used to generate each sample.
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